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1. Abstract

The goal of my project is to develop software that allows the simulation of many-body systems.
Numerical modelling can save a lot of time and money both in basic and applied research. I decided
to exploit the parallel computing capabilities of the graphics adapter in order to be able to model
many-body systems at low cost and I used the programming language C++. My first goal was to
model collisions of galaxies and eventually I was able to simulate such collisions in two and three
dimensional  space.  My  results  are  consistent  with  astrophysical  observations.  Furthermore,  I
modelled solids, liquids and gases using the Lennard-Jones potential.  I  optimized these and my
astrophysical  simulations  throughout  my  project.  My  simulations  based  on  the  Lennard-Jones
potential reached their limit when I tried to model water molecules as I did not include quantum
mechanical effects. However, I obtained interesting results in the area of nanofluidics, which clearly
demonstrated differences between our macroscopic world and the nanoscale. Finally, I developed
components for controlling liquids on the nanoscale, which could be used for the realization of
novel devices. 

2. Advantages of simulations

The  development  of  functional  and  safe  products  requires  both  a  lot  of  money  and  time.
Fortunately, the advancements in computational power have made it possible to simulate the safety
and functionality of a product and thus to reduce the number of tests required with a real prototype.
In  the  field  of  fundamental  research,  the  steady increase  in  computational  power  has  made  it
possible to use computer simulations to test  existing knowledge and even gain new knowledge
required for future experiments.
One of the widely used methods for simulating physical systems is the N-body simulation. It has the
advantage of being a very accurate model  of the real  physical  world and thus creates accurate
results. Unfortunately, this comes at the cost of using up a lot of computational power.

3. The GPU

An N-body solver  has  to  calculate  the  interaction  of  each of  the  N particles  with  every other

particle. The number of interactions I as a function of N can be described by I ( N )=
N∗( N−1)

2
.

For example, 500 particles result in ~125.000 interactions, which all need to be calculated. In many
cases  though,  500  particles  are  not  enough.  Often,  thousands  of  particles  are  required,  which
quickly results in millions or even billions of interactions.
What makes it possible to calculate such huge numbers of interactions is, that each interaction can
be calculated independently from every other interaction. In theory, you should be able to split up
the workload of calculating the interactions of each particle onto several processors and thus to
speed up the simulation. This has been successfully done before, but only with the help of huge
computer clusters, which only a few people have access to.
This made me wonder whether it would be possible to speed up an N-body simulation avoding the
need for big computer clusters, to model complex N-body systems on a normal desktop computer.
The solution I had in mind to make this possible is to use the graphics processing unit (GPU) rather
than the central processing unit (CPU) to calculate the interactions.
At first glance the GPU is a very powerful, but specialized piece of hardware. Over the years it has
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been developed to render more and more complex 3 dimensional scenes. Each scene can consist of
up to several billion vertices, creating triangles and more complex meshes, which a texture can then
be applied to. Many shader effects can then also be applied to portions of the scene, like a mirror
reflecting light or glass distorting objects  behind it.  To be able to render such complex scenes,
graphics  cards  are  built  based  on  a  different  architecture  than  a  CPU,  in  fact  like  a  tiny
supercomputer. Many modern graphic cards contain a minimum of one thousand CPUs per card
which can calculate complex shader effects in a parallelized manner and thus speed up the rendering
of a scene. Through recent technologies like Compute Unified Device Architecture (CUDA) [1], it
has become possible to reprogram the graphics card to not calculate complex shaders, but nearly
any kind of formula.
Because the graphics card is a basic requirement for any computer, it is available to every computer
user. Reprogramming the graphics card through CUDA into an N-body solver should allow me and
other people to simulate complex N-body systems at home.

4. Galaxy collisions

I wrote a program to set up the graphics card, upload and download data to and from it and to
display the results of my N-body simulations. The program itself is relatively complex and thus
only critical key components will be discussed here, in particular the kernel code running on the
graphics card itself.
My first goal was to simulate the collision of two galaxies with each other. The results of such
collisions are well known from astronomical observations, which allows me to compare and verify
the results of my simulations. This simulation requires a formula that describes the forces which
arise from the interaction of two bodies of a given mass. The force behind this is gravity which can
be approximated by Newton’s Law of Gravitation.

F⃗ (ij)=G
mi∗m j

∣r⃗ ij∣
2 r̂ ij

where indices i and j represent the indexes of the two interacting bodies, F the resulting force, G the
gravitational constant,  m the mass of one body and  rij the position of body j subtracted from the
position of body i. Any force that acts on a mass results in an acceleration of the mass, described by

a⃗=F⃗ ij /mi , with  a being the acceleration. Using Newton's second law to simplify the Law of
Gravitation results in a shortened version of the formula, which directly returns the acceleration and
requires less computation, thus speeding up the simulation later on.

a⃗ ij=G
m j

∣r⃗ ij∣
2 r̂ ij

To calculate the total acceleration one mass experiences, the partial accelerations described by the
above formula must be summed over every other mass in the system

a⃗ i=∑
j=1

N

G
m j

∣r⃗ ij∣
2 r̂ ij , (i≠j)
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After the total acceleration of every mass has been calculated, the velocity and position need to be
updated accordingly. The resulting equations are differential equations which can only be solved
using a numerical integrator. Many numerical integrators exist, with some having a high accuracy
and others being fast. For my simulations of galaxy collisions, the Leap-Frog-Integrator [2] can be
used. In comparison to other integrators, it has a slightly lower accuracy, but it is faster. The drop in
accuracy is negligible when using 32 bit floating point values, but the increase in speed can result in
overall faster simulation times. The Leap-Frog-Integration for velocity is ⃗v t+1/ 2dt= ⃗v t−1/2dt+a⃗ t dt ,
with dt being the time each of the simulation, t the time of the current step and v the velocity. The
position is integrated in nearly the same manner with x⃗ t= ⃗x t−dt+ ⃗v t−1/2dt dt and x being the position
of the particle. These three basic equations are sufficient to program a simple kernel for the graphics
card which is able to simulate an N-body system.

I  tested  my  N-body  solver  by  simulating  a
collision  of  two  disk  galaxies  in  two
dimensions.  The  result  of  such  a  collision  is
described  by the  Hubble  Sequence  [3],  which
predicts  that,  depending  on  the  size  of  the
galaxies  and  the  collision  vector,  the  two
galaxies  should  merge  and  form  one  spiral
galaxy or both galaxies survive the collision and
also become spiral galaxies. In my simulation, I
consider  a  near-hit  of  two  galaxies  of  similar
mass and size, resulting in the two galaxies not
merging  with  each  other  but  still  strongly
interacting  through  gravity.  The  result  of  the
simulation  at  each  time step  is  displayed  live
through OpenGL. In the simulation itself, when
the two disk galaxies come closer together, they
attract each other's  star  disk and central  black
hole  (Fig.  4.1).  When  the  galaxies  are  close
enough, so that the black hole of one galaxy is
within the star disk of the other, the shape of the
galaxy  changes  rapidly.  Some  stars  are  flung
away into space, while other stars change their
orbit. Over a short period of time, this results in
both galaxies loosing their initial disk form. The
density  of  the  stars  is  highest  near  the  black
hole,  where  a  very tiny,  but  dense and bright
disk has formed. Both galaxies also develop a
long arm spiraling out of the center into space

and another,  shorter  arm pointed  at  the  other  galaxy’s  black  hole  (Fig.  4.2).  Both  former  disk
galaxies transformed into spiral galaxies, as predicted by the Hubble Sequence and shown by my
simulation. In Fig. 4.3, a collision of two real disk galaxies can be seen that formed a very similar
structure in comparison to the results of my simulation.
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Fig. 4.1: Two disk galaxies moving toward each 
other

Fig. 4.2: Two disk galaxies transforming into 
spiral galaxies after a collision
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My initial simulation returned accurate results but
was  limited  to  two  dimensional  space  and  thus
being restricted to galactic collisions where both
galaxies lay on one plane.  Therefore, I extended
my program to also allow the simulation of three
dimensional  collisions,  allowing  every  possible
configuration  of  galaxies.  Using  my  modified
program,  I  created  a  new  simulation  again
representing the collision of two disk galaxies, but
with one galaxy being rotated by 90°, so that it is
perpendicular  to  the  other  galaxy.  The  galaxies
collide in a near-miss scenario. After the collision
both galaxies develop two spiral arms. The arms
of the rotated galaxy lengthen over time and as a
result they become very thin. This galaxy also did
not develop a very dense disk near its center like
in the previous simulation (Fig. 4.6). Instead, the
other galaxy develops the thin, but very dense disk
near  its  black  hole.  It  also  develops  two  spiral
arms  considerably  shorter  and  thicker  than  the
spiral  arms of the rotated galaxy (Fig.  4.7). The

galaxy also develops a warp that can be seen when viewed sideways (Fig. 4.8), which is also the
case for real galaxies that developed in a similar manner (Fig. 4.9) [4].

5. Solids

After my simulations of galactic collisions, I wanted to simulate a very different field of physics
that can be described by N-body simulations. I choose to simulate the formation of solids from
gaseous and liquid phases and the transition into these phases. The force I based my simulations on
to model the interactions of atoms with each other is the Lennard-Jones-Potential [5], given by

a⃗ ij=−24ϵ{2( σ
12

∣r⃗ ij
13∣

)−( σ
6

∣r⃗ ij
7∣
)}r̂ ij , where  ɛ is a constant for the strength of the potential and  σ a

constant for the range. When plotted (Fig. 5.1),
the  use  of  the  Lennard-Jones-Potential  for  the
simulation  of  atoms  becomes  clear.  It
approximates  the  behavior  of  two  uncharged
atoms that attract each other slightly when they
are a small distance apart, and repulse each other
with  a  very  strong  force  when  the  distance
between them gets very small. Therefore, it can
be  used  to  simulate  the  formation  of  solids,
liquids and gases.
As a first simulation I put 1000 atoms in a box in
two  dimensions.  Not  only  the  Lennard-Jones-
Potential was acting between the atoms, but also
a  uniform  downward  force  resembling  the
gravity  on  earth's  surface.  What  I  expected  to
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Fig. 5.1: A plot of the Lennard-Jones-Potential 
relating the potential enegry to the distance

Fig. 4.3: A potograph of a galactic collision, 
resulting in two spiral galaxies being created 
[I1]
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happen was, that the atoms clump together to form a solid slowly falling down to the bottom of the
box. Instead, I noticed that the atoms got more and more kinetic energy until they were unable to
form a solid. After some analysis to find out why this happens, I concluded that the repulsive force
between two colliding atoms compared to the attractive force is so high, that the whole system starts
to heat up over time due to tiny errors in the numerical integrator that become important because of
this big force difference. To solve this, the time step could be reduced, which increases the overall
accuracy of the simulation, but this would only slow down the unwanted heating effect. Another
numerical integrator could also be used, but after some tests with other integrators like the Verlet-
Integrator [6], the heating effect stayed or even reversed into a cooling effect. Because this severely
violates the conservation of energy,  I needed another method to make the energy stay constant
without slowing the simulation down too much. The solution I came up with was to enable the
manual and automatic cooling and heating of the whole system, or in other words, to enable the
removal or addition of kinetic energy to all  atoms at  run time. Because the total energy of the
system is  known at  the  start  of  the  simulation,  unphysical  changes  in  the  total  energy can  be
adjusted for with changing the kinetic energy of each atom accordingly, so that the overall energy of
the whole system stays constant. This also enables  manual changes of the total energy at run time,
so that the system can be cooled or heated up to transition between the different phases of matter.
After changing my program to conserve energy, I repeated the simulation. After some time, the
atoms positioned themselves into a hexagonal grid, which is the lowest energy state for an atom in a
Lennard-Jones solid (Fig. 5.2). Because of the uniform downward force, the solid also dropped to
the bottom of the box. After adding enough energy to the system, the atoms at the surface of the
solid broke out of the hexagonal grid and were fast enough to create a gas (Fig. 5.3). Over time, the
whole solid transitioned into a gaseous phase.

6. Optimizations

The previous simulations all worked well, but were limited by the number of particles I could put
into  the  simulation.  With  my unoptimized program,  simulations  with more  than  3000 particles
created a noticeable delay per step. To simulate more complex physical systems, I would have to
wait a long time before the simulation would return a proper result. Therefore, I needed to optimize
my program to be faster,  while still  returning accurate results. One optimization that works for
every type of N-body system that comes from the fact that I use the graphics card relates to memory
access [7]. When one process tries to gather data about the position of other particles in the N-body
system, it needs to access the global memory of the graphics card. Global memory access in itself is
very slow and usually takes  between 500-1000 clock cycles  in  between which  nothing can  be
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Fig. 5.3: A solid being heated, creating
gas at the surface

Fig. 5.2: Atoms arranged in a hexagonal grid 
forming a solid
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calculated. To reduce the access times to global memory, the memory controller of the graphics card
tries to group the access of memory regions together. This only works though, when there is no gap
between the requested memory regions. In my case, when I try to read the position of a particle, the
position data is composed as a three dimensional vector with the three elements x, y and z. Because
the vector cannot be read from memory at once, every thread first requests the x component of the
vector. The  y and  z component then create a gap that significantly slows down the access to the
memory. To speed the access up, the memory can be reorganized to represent three continuous lists
that only store one vector component each, but have no gap when accessed. This speeds up my
simulations by a maximum of 40% and an average of  30%, depending on the size of the simulation.
Another optimization that only works for the Lennard-Jones-Potential is to cut off the potential after
a set distance. The idea behind this comes from the fact, that the Lennard-Jones-Potential quickly
looses in strength with distance until it becomes insignificant. Calculating interactions further than
this radius has no significant impact on the simulation's outcome, so they can be ignored and a lot of
time can be saved.

A way to implement  this  cutoff  radius  very
effectively is to restrict the area the simulation
can take place in and to then overlay a grid
onto that area. Each cell of the grid gets an
edge length  as  big  as  the  cutoff  radius  and
gets  filled  with  particles.  Then,  only  the
interactions  between  particles  within
neighboring cells are calculated, which speeds
up the simulation substantially. I was able to
simulate  a  fluid  using  the  Lennard-Jones-
Potential  with  10000  particles  in  real  time
(Fig. 6.1).

7. Nanofluidics

Using my optimized program, I wanted to test whether I could use my simulations on the graphics
card for research in the field of nanofluidics [8] in which the the flow of fluids in the scale of up to
100 nanometers is studied to enable nanoscale Lab-on-a-Chip devices.
In the macroscopic world, the flow of fluids through a pipe is described by Bernoulli and Venturi,
but  it  proves to  be problematic  to  apply the same laws to  pipes with diameters  of only a  few
nanometers. In a first simulation I wanted to test this using the Lennard-Jones-Potential to simulate
a liquid flowing through a pipe with a diameter of only a few nanometers which has a narrowing
build into it. The first problem that arised was, that the attractive forces between the liquid and the
inner wall of the pipe makes the liquid stick to the wall and therefore it resists being pushed trough
the narrowing. Applying high pressure and therefore high energy to the liquid causes parts of it to
heat up and transition into a gaseous phase. This shows that the laws of the macroscopic world
cannot be transferred directly into the microscopic world.
One of the problems I had in my previous simulation was how to pump the liquid through the pipe
without mechanical parts and it sticking to the inner wall of the pipe. An idea I had to solve this
problem was to exploit electrostatic forces to control the flow of the liquid. A droplet of liquid that
is electrically charged by ions could be pumped through a pipe by electrostatic forces if a section of
the pipe behind the liquid is also charged with the same polarity. This will cause the ions in the
liquid and thus the liquid to be repelled by the charged section of the pipe. Furthermore, repulsive
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Fig. 6.1: A fluid simulated using 10000 particles



N-body simulations using the GPU Page 8 of 10

forces  between the  ions  in  the  liquid  may
prevent the liquid from forming a solid that
can  stick  to  the  walls  of  the  pipe.  To
simulate this, Coulomb's Law is required to
model  the  forces  that  arise  from  the
different charges. It is the same as Newton's
Law of Gravitation, except that the masses
are  replaced  with  charges  and  the
gravitational  constant  becomes  Coulomb's
constant.
In the simulation the part of the pipe behind

the  liquid  gets  charged,  which  causes  the
liquid to get pumped through and out of the
pipe (Fig. 7.1). The concept of using charges
to control  liquids  can  even be extended to
include  an  element  that  behaves  like  a
transistor  for  liquids,  enabling  or  disabling
liquids the flow of liquids by using a long
segment  of  the pipe in  front  of  the  liquid,
which can either have no charge and let the
liquid flow through it or be charged to repel
the  liquid.  Attaching  two  of  these  liquid
transistors to the arms of a T-junction allows
one to build a switch that  allows choosing
which path a liquid takes (Fig. 7.2).
One  downside  of  using  ions  to  make  the
liquid react to the charge-based components
build  into  the  pipe  is  that  these  ions  limit
what  can  the  transported  along  with  the
liquid: any chemicals that react with the ions
are not  suitable.  To solve  this,  I  combined
my method of using static charges to control
the liquid flow with ideas from the field of
microfluidics.  There,  to  pump  a  liquid
through  a  pipe,  the  pipe  is  filled  with  a
pressurized  carrier  liquid.  Then,  water
droplets  are  put  into  the  carrier  liquid  as
container for chemicals, biological samples,
etc. As the water molecule has a permanent
dipole,  it  has  the  property  of  reacting  to
static charges on its  own, it  is attracted by
them.  Using  my  simulations,  I  wanted  to
simulate  the  T-junction   from my previous
simulation,  but  using  the  non-polar
pressurized carrier liquid as a pump to move

a water  droplet  along the  nanopipe  and two electrodes  placed directly at  the  beginning of  the
junction to control which path the polar water droplet takes (Fig. 7.3). Applying a charge to one of
the electrodes then attracts the water droplet and redirects it onto the corresponding path (Fig. 7.4).
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Fig. 7.1: A pump for electrically charged liquids

Fig. 7.2: A T-junction pipe with transistors and a 
pump attached to its arms. Only the upper transistor 
is active, therefore the liquid flows down

Fig. 7.3: A junction using an electrode to attract a 
water droplet and a carrier liquid to transport the 
droplet
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8. Software

The program I  wrote  to  simulate  all  my previous  simulations  requires  knowledge of  C++ and
CUDA to use and to create new initial setups for new simulations. People who are not familiar with
CUDA or C++, but want to use my program would first need to learn C++ or CUDA. To still allow
the fast creation of N-body systems based on my research, I set myself the goal to attach a user
interface to my base program, which allows the fast creation of N-body simulations using the GPU
even without being familiar to technologies like CUDA.
I am still developing the software, which currently enables the user to create a two dimensional n-
body simulation.

9. Summary

I was able to show that complex N-body systems can be simulated in large scale on a graphics card
using recent technologies like CUDA. My simulations provide correct results and are still very fast,
thus my method can be used for research. The software I am currently developing would enable
other people to create N-body simulations on their desktop computer.
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Fig. 7.4: Because the upper electrode is active, it attracts the water droplet, which is therefore 
redirected to the upper path
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